欧美精品一区二区高清在线观看,懂色av一区二区三区,夜鲁夜鲁视频在线观看,欧美成人色视频在线

Classification of Bwitt photovoltaic inverters_bwitt photovoltaic inverter technology and strengths

Column:Industry News Time:2020-12-28
Bwitt photovoltaic inverter ranks among the top ten photovoltaic inverter rankings, so do you know what technologies and strengths of Bwitt photovoltaic inverter have?

Bwitt photovoltaic inverter ranks among the top ten photovoltaic inverter rankings, so do you know what technologies and strengths of Bwitt photovoltaic inverter have? What are the classifications? This article first introduces the classification of Bwitt photovoltaic inverters, and then counts 16 black technologies about Bwitt photovoltaic inverters. Follow the editor to learn more about it.

 

1. Centralized inverter

Centralized inverter technology is if thousands of parallel photovoltaic strings are connected to the DC input of the same centralized inverter. Generally, three-phase IGBT power modules are used for higher power, and field effect transistors are used for lower power. DSP converts the controller to improve the quality of the generated electric energy, making it very close to the sine wave current, and is generally used in the system of large photovoltaic power stations (>10kW). The biggest feature is the high power and low cost of the system, but because the output voltage and current of different photovoltaic strings are often not completely matched (especially when the photovoltaic strings are partially blocked due to cloudy, shade, stains, etc.), a centralized The method of change will lead to a decrease in the efficiency of the inverter process and a decrease in the energy of the electricity users. At the same time, the power generation reliability of the entire photovoltaic system is affected by the poor working status of a photovoltaic unit group. The latest research direction is the use of space vector modulation control and the development of new inverter topology connections to obtain high efficiency under partial load conditions.

 

2. String inverter

The string inverter is based on the modular concept. Each photovoltaic string (1-5kw) passes through an inverter, has maximum power peak tracking at the DC end, and is connected in parallel at the AC end. It has become an international The most popular inverter on the market.

Many large photovoltaic power plants use string inverters. The advantage is that it is not affected by module differences and shadows between strings, and at the same time reduces the mismatch between the optimal working point of the photovoltaic module and the inverter, thereby increasing the power generation. These technical advantages not only reduce system costs, but also increase system reliability. At the same time, the concept of "master-slave" is introduced between the strings, which makes the system connect several PV strings together and let one or several of them work when a single string of electric energy cannot make a single inverter work. , Thereby producing more electricity. The latest concept is that several inverters form a "team" to replace the concept of "master-slave", making the reliability of the system a step further. Currently, transformerless string inverters have taken the lead.

 

3. Micro inverter

In the traditional PV system, the DC input end of each string inverter will be connected in series by about 10 photovoltaic panels. If one of the 10 panels connected in series does not work well, this string will be affected. If the inverter uses the same MPPT for multiple inputs, each input will also be affected, greatly reducing the power generation efficiency. In practical applications, various sheltering factors such as clouds, trees, chimneys, animals, dust, ice and snow will cause the above factors, and the situation is very common. In the PV system of the micro-inverter, each panel is connected to a micro-inverter. When one of the panels does not work well, only this one will be affected. All other photovoltaic panels will operate in the best working condition, making the overall system more efficient and generating more power. In practical applications, if the string inverter fails, it will cause the panels of several kilowatts to fail to function, and the impact of the failure of the micro inverter is quite small.

 

4. Power optimizer

The installation of a power optimizer (OptimizEr) in the solar power generation system can greatly increase the conversion efficiency and simplify the inverter (Inverter) function to reduce costs. In order to realize a smart solar power generation system, the device power optimizer can ensure the best performance of each solar cell and monitor the battery consumption status at any time. The power optimizer is a device between the power generation system and the inverter. The main task is to replace the original best power point tracking function of the inverter. The power optimizer uses analogy to perform extremely fast best power point tracking scans by simplifying the circuit and a single solar cell corresponds to a power optimizer, so that each solar cell can indeed achieve the best power point tracking In addition, you can also monitor the battery status anytime and anywhere by inserting a communication chip, report problems in real time, and allow relevant personnel to repair them as soon as possible.


日本色一区二区三区四区五区| 人人妻人人澡av天堂香蕉| 波多野结衣人妻奴隶| 亚洲影视一区二区三区| 国产精品不卡a∨在线观看| 久久久久久999一区二区三区| 日韩亚洲中文字幕一区| 国产精品偷窥熟女精品视频| 国产精品v欧美精品v日本精| 国偷自产av一区二区三区| 天天干天天射天天日天天操| 日本韩国亚洲欧美一区二区三区| 无码无套少妇毛多69XXX| 18禁强伦姧人妻又大又久久| 99精品国产一区二区青青性色| 亚洲一级二级中文字幕| 国产高清国内精品福利免费| 日本精品福利在线视频| 五月婷婷六月丁香综合小说| 精品视频亚洲一区二区三区| 免费人成视频在线观看不卡| 日本在线一区二区免费| 久久久久久精品无码免费看| 亚洲综合网无码中文字幕| 中文字幕久久中文字幕综合网| 国产欧美日韩va另类| 中文字幕熟女一区二区三区| 国产欧美在线观看精品一区污| 亚洲AV手机在线观看| 亚洲人妻最新中文AV| 五月婷婷深开心五月| 国产亚洲黄色在线影院| 国产精品一区二区97| 花花草草寻亲记哪里看全集| 成人亚洲精品一区二区| 成年女人都爱看的毛片| 欧美日韩成人精品久久久| 午夜无码精品一区二区三区| 国产精品一区二区久久hs| 漫画韩漫画免费在线观看| 日本欧美一区二区免费不卡|