欧美精品一区二区高清在线观看,懂色av一区二区三区,夜鲁夜鲁视频在线观看,欧美成人色视频在线

Talking about the protection scheme of pure sine wave 220v inverter failure

Column:Industry News Time:2021-10-19
Communication high-frequency inverters need to achieve long-term uninterrupted power supply to key loads, which places extremely high requirements on the reliability of high-frequency inverters.

Communication high-frequency inverters need to achieve long-term uninterrupted power supply to key loads, which places extremely high requirements on the reliability of high-frequency inverters. In the actual application environment, the user may cause the inverter output short circuit due to operating errors or environmental factors, or the inverter bridge arms may pass through. At this time, the inverter power tube will have a large current passing (this article mainly focuses on IGBT explanation can also be applied to MOSFET by analogy).If such fault currents are not detected and effective protection actions are implemented, the collector or drain current of the IGBT will far exceed the safe working area, and the IGBT will cause high transient currents. Power loss burns, and there may also be overvoltage breakdown damage caused by overcurrent.

Output short-circuit protection: the inverter needs to be able to withstand the short-circuit impulse current repeatedly, and the inverter can be turned off after maintaining 200ms. This requires the current flowing through the IGBT during the short-circuit to be controlled at ICRM (repetitive peak current, generally ICRM=2 IC nom).



Bridge arm through protection: For example, VT2 itself fails and is short-circuited by external electrical connections. When VT1 is turned on, the bus is directly short-circuited through VT1. This through current rises very fast, generally within 10 μs that can rise to the IGBT rated current After the bridge arm through-through occurs, it is necessary to quickly detect this fault, block and deadlock the IGBT drive, and allow the drive signal to be turned on again until the system command is reset. In the total life cycle, the general IGBT can not withstand this type of through current more than 100 times. This type of shoot-through protection needs to turn off the drive before the IGBT current does not exceed ISC (transient peak current, generally ISC=4 IC nom) and turn off the inverter at the same time within 10μs.


1 Output short circuit protection


Install a HALL current sensor at the label 4 to detect the Lf inductor current. When an output short circuit occurs, if VT1 is turned on, the voltage UC1 short-circuits through VT1 and the inductor Lf, and the inductor current rises rapidly. When the current reaches a certain range (greater than the normal operating current) , Less than the repetitive peak current ICRM), the VT1 and VT2 drives are blocked. At this time, the inductor current ILf begins to decrease. When the current drops to a certain level, the drive blockade signal is cancelled. If the output has been short-circuited during this process, when the next drive comes, the inductor current starts to rise again. When the short-circuit protection point is reached, the IGBT drive is blocked again. After 200ms of repeating this, the software logic can judge that the output short-circuit has occurred at this time. Turn off the inverter.


2 Overcurrent protection of bridge arm through


First of all, in order to avoid the through failure caused by the driving signal of the upper tube VT1 and the lower tube VT2 at the same time, it is necessary to consider adding a dead zone in the driver software, and on the other hand, it is also necessary to adjust the upper and lower tubes on the hardware circuit. The drive waveforms of the two are interlocked by hardware. When the drive levels of the upper and lower tubes are at the same time, the drive voltage is automatically blocked.




In addition, the IGBT may also instantaneous breakdown due to overvoltage, or its own avalanche failure short-circuit, or short-circuit caused by electrical connections caused by external reasons. Protection measures can not completely avoid the possibility of bridge arm shoot-through in the converter, so how to detect the shoot-through fault in time when the bridge arm shoot-through occurs and protect the IGBT to avoid IGBT burning is particularly important.


色婷婷狠狠久久综合五月| 日本一区二区三区影院| 欧美日韩国产精品视频一区| 日韩推理片电影在线播放| 日韩电影av二区久久国产| 精品无码中文字幕在线| 欧美激情a成人综合亚洲综合| 久久国产无码模特视频| 欧美中文亚洲国产日韩| 爆操小骚货在线观看| 久久久久亚洲av毛片大| 日本一区二区三区综合| 色婷婷久久久久久久久久| 久久久久久久性生活| 中文字幕久久中文字幕综合网| 中文字幕日本一区二区在线观看| 国产白丝一区二区三区| 经典国产乱子伦精品| 精品久久久久久久久久中文幕| 久久国产亚洲一区二区三区| 欧美日韩精品一区二区三区激情在线| 亚洲线日本一区二区三区| 精品国产99高清一区二区三区| 无码人妻w在线视频影院| 久久久久久久性生活| 亚洲Av无码精品色午夜蜜芽| 国产高清国内精品福利免费| 亚洲成av一区二区三区| 国产精品女同久久久久久| 久久亚洲国产精品五月天| 欧美一级精品片在线看| 99久久免费精品国产免费高清| 久久精品一本无码免费| 日本动漫精品v毛片大全| 久久亚洲精品国产av| 日韩推理片电影在线播放| 鼻子里天天有黄色鼻屎| 亚洲欧美国产其他二区| 久久久久精品欧美日韩精品| 欧美日韩一区二区三区自拍| 最新中文乱码字字幕在线看|